
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 8, Issue 12, December 2019, ISSN: 2278 – 1323

499
All Rights Reserved © 2019 IJARCET

unit
testing

Integratio
n testing

Regression
Testing

System
testing

Acceptanc
e testing

• to check whether it is according to the
user requirements or not.

• software is installed in an operating system
with its configurations.

• unnecessary algorithms and code is deleted
without effecting the execution of the
software

• testcases are designed for the interfaces
between the components

• tests all the testcases of a program



Abstract—Software testing is an activity which is done at the

ending stage of software development life cycle with in a limited

period of time . In particular, most developers tend to test their

programs manually and automatically. In this paper, basic data

structures are utilized to emphasize the significance of writing

efficient test cases by testing their essential properties. The paper

also includes white box testing at the unit level, to find the testcases

of a program. This approach accomplishes two important

objectives: (1) to find number of testcases and how to find hidden

bugs and defects in their programs and (2) it illustrates them to

test more efficiently by leveraging data structures that are already

familiar to them.

Keywords—Software Testing strategies; Data Structures; Unit

Testing; white box Testing; Stacks;Cyclomatic complexity

INTRODUCTION

In general, software testing is an important area in the

software development life cycle. It is used to find bugs present

in the programs. Software testing is not only error detection;

Testing software also means operating the programs under

controlled conditions, to check whether it behaves ―as

specified‖ by the user. Testing contains both verification and

validation ,verification means whether we are getting the

output or not where as validation means getting the output

according to the user requirements.

The different types of testing techniques are as follows:

unit testing contains white box testing and black box

testing.white box testing tests all the testcases of a program

where as the blackbox testing tests whether we get the output.

or not. Integration testing is done to combine all the

components and the testcases are designed for the

interfaces between the components.

Regression testing is done when theunnecessary

algorithms and code is deleted without effecting the

execution of the software. System testing is done when the

software is installed in an operating system with

itsconfigurations. Acceptance testing is done by the user to

Manuscript received Dec, 2019.

 D.Meenakshi, Lecturer in Computer Science, GDC Tiruvuru,Krishna

University, Krishna, India, 9550078441,dmeenu1986@gamil.com.

K.Pradeep Kumar, JKC Mentor,GDC Tiruvuru, Krishna University,, Krishna,

India, 9550078441,pradeep.vspt@gamil.com.

check whether it is according to the user requirements or not.

White box Testing:

The number of testcases are calculated using cyclomatic

complexity of a program .cyclomatic complexity is calculated in

three ways. They are:

1. Number of predicate nodes+1

2. Number of edges- Number of nodes+1

3. Number of Regions+1

Data Structures [8] is an important course existing in

Computer Science, Computer Engineering and Software

Calculating Testcases for Data Structures using

white box testing

D.Meenakshi , K.PradeepKumar

unit tesing

integration testing

regression testing

system testing

Acceptance testing

Testing Types

mailto:dmeenu1986@gamil.com
mailto:pradeep.vspt@gamil.com

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 8, Issue 12, December 2019, ISSN: 2278 – 1323

500
All Rights Reserved © 2019 IJARCET

Before
PUSH

Top=1

B

A

PUSH C

operation

top=2

C

B

A

Before
C

B

A

POP()

OPERATION

After

B

A

Engineering undergraduate and postgraduate programs.

Though , software testing is always a required course. The

moto behind testing may be simple to most of the users.

But

,most commonly, users test their programs manually by

giving the input and they will produce the correct results as

output[1235] and after getting the output the users wont go

for the other testcases and they do not find the bugs present

in the program. This process is called as confirmation

bias[2].as the users are short in time they wont find time

to check all the testcases present in the program and to

optimize the program.

The main goal of this paper is to share a reliable teaching

approach which will enable users to put pen to paper the

automated tests by taking into account the fundamental

properties and constraints of a problem. It introduces a direct

approach to unit testing by using common data structures that

are often used in coding and software development. By using

data structures, along with distinguished problems that are

introduced earlier in the curriculum or in a prerequisite course,

users can flawlessly learn the ideology and application of

software testing without the added burden of learning new

unfamiliar content. The rest of the paper is organized as

follows. Section 2 presents a fundamental overview of Stacks .

Section 3 explains how to test the fundamental properties and

implementation of a stacks. Section 4 presents the calculation

of number of testcases using cyclomatic complexity to illustrate

white box testing at the unit level. Section 5 concludes the

paper.

USING DATA STRUCTURES FOR SOFTWARE TESTING

As stated earlier, software testing is not always a

requisite course in most under graduate degree programs.
However, it is a key aspect of software development and
is typically introduced briefly in the later stages of most
Software Engineering courses.

users become plagued with the software testing tools they

want to learn to test software using automated testing. They

often struggle with the concept of testing to find errors rather

than just testing to show that their software is operating with a

given set of inputs and giving the correct output results. To

solve this issue, a variety of software testing problems are

given to users, and it becomes immediately apparent that they

do not quite understand the fundamental properties to find

bugs. A natural approach is to utilize Abstract Data Types

(ADT) to teach them this type of testing [8].

Abstract Data Types [8] are taught in Data Structures, and

most users learn about ADTs to aid and develop their

programming skill set and knowledge. It, therefore, makes

perfect sense to utilize ADTs in teaching software testing,

because doing so provides continuity and allows users to

concentrate more on learning and applying testing principles.

Stacks work on the principle of last-in-first-out (LIFO)

data structure. In a stack, the element will be inserted in the

last and removed first. Similarly, stacks are implemented

using arrays and linked lists. The number of testcases are

calculated for the stack operations during its implementation in

section 3.

THE SOFTWARE TESTING STRATEGIC APPROACH

White box testing is first introduced to testing at the unit level

[7]. These tools allow them to develop automated test methods and

test classes [6, 8]. Unit testing is a software testing process in which

the smallest testable parts of a program are individually and

independently analyzed for proper operation. Unit testing focuses

more on finding bugs in objects, functions and classes. In particular,

how to test Stacks and its operations when implemented using

arrays to ensure that their fundamental properties are not violated.

They are also introduced to performance testing at the unit level.

Fig. 1. Example of stack push operations

Fig 2: Example of stack pop operations

A. Stacks

operations consists of initializing the stack, using it, and then

de-initializing it. A stack has two basic operations: (a) push() –

inserting (storing) an element on the stack; and (b) pop() −

deleting (accessing) an element from the stack. Additionally,

other supporting operations that must be defined to efficiently

use a stack are:

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 8, Issue 12, December 2019, ISSN: 2278 – 1323

501
All Rights Reserved © 2019 IJARCET

 peek() − getting the top data element of the

stack, without removing it.

 isFull() – to check whether the stack is full.

 isEmpty() – to check whether the stack is empty.

Fig. 1 shows the basic push operation behind a stack. A

new element is always added at the top of the stack using

the push() operation.Fig 2 shos the basic pop operation

behind a stack. The element at the top of the stack is always

removed with the pop() operation.

B. The Stack Test

Users are asked to create a test that will effectively test

the properties of a stack. This is simple to test; it involves

adding a bunch of elements on a stack, and ensuring that

they are removed in the correct order.

For example, if A and B are pushed unto a stack one at a

time, and if the stack is popped (the element at the top of the

stack, is removed first, one at a time) until it is empty, then this

means the stack is adhering to its fundamental LIFO property..

In this example A was inserted on the stack first; this

means that A will be the last element to be popped from the

stack. Similarly, B was the second element to be inserted on

the stack. Therefore, B must be the first element to be popped

from the stack. Thus, the first pop operation should remove an

element with the value B. In other words, the sequence and

value of elements added must stick on to the LIFO constraint.

In the example given, notice that each element holds a unique

value to better illustrate the basic dynamics of this test. If the

first pop operation deleted an element with a different value,

then clearly the stack is not adhering to its fundamental LIFO

constraint.

C. Implementation and Constraints on stack

When a stack is implemented using arrays in c language

,as the array is having a fixed size with ‗n‘ elements then the

constraints for push operation are:

1) if top=0 means the stack is empty and the insertion can be

done by incrementing the top value.

2) if top=n means the stack is full or stack overflow and the

insertion cannot be done into the stack. If the stack is full

then the insertions cannot be done into the stack.

void push()

{

if(top>=n-1)

{

printf("\n\tSTACK is over flow");

}

else

{

printf(" Enter a value to be inserted:");

scanf("%d",&x);

top++; stack[top]=x;

}

The constraints on pop operation are:

If(top=-1)

{

printf("\n\t Stack is under flow");

}

else

{

printf("\n\t The popped elements is

%d",stack[top]); top--;

}

}

CALCULATING THE TESTCASES USING WHITE BOX TESTING:

In white box tsting testing [4], sometimes the performance

of a given method or class is tested to resolve its efficiency in

problem solving. Exhaustive testing is expensive (and time

consuming). Therefore, evaluating the effectiveness of a

solution can be used as a performance test at the unit level.

Recursion is a topic that is covered in Data Structures.

Essentially, recursion is used where a large problem can be

splitted into smaller repetitive ―sub-problems. A recursive

method will call itself to perform those sub-problems, and

eventually the method will come across a sub-problem so

trivial, that it can handle it without recalling itself. This is

known as a basis path testing, and it is required to prevent the

method from calling itself repeatedly without ever stopping.

Whitebox testing is used test each and every statement

present in the program.it is also called as glass box testing or

transparent testing the number of testcases are calculated by

using flowgraph of the program.for example if we consider a

program for biggest of three numbers.

1.if (A >= B) {

2. if (A >= C)
printf("%d is the largest

number.", A);

3. else
printf("%d is the largest

number.", C);

4. }

5. else {

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 8, Issue 12, December 2019, ISSN: 2278 – 1323

502
All Rights Reserved © 2019 IJARCET

6. if (B >= C)
7. printf("%d is the

largest number.", B);

8. else
9. printf("%d is the

largest number.", C);

10. }

}

The flow graph for this program is:

By using data structures, along with well-known problems that

were introduced to users earlier or in a prerequisite course, they

can flawlessly learn the principles and application of software

testing without focusing on learning new unfamiliar content.

Furthermore, users often utilize the same data structures to

implement software programs in other upper level courses and

internship projects. Therefore, software testing with ADTs,

provides users with a second opportunity to master their skills

and knowledge in software development and Cyclomatic

complexity for this graph is:

1.Number of edges-no of vertices+2=11-9+2=4

2.Number of predicate nodes+1=3+1=4

A predicate node is a conditional node present in the program

3. Number of regions present in the flow graph=4[Here External

region is also considered as one region]

 Like this for stack data structure for push operation the

number of testcases will be 2 and for pop operation the

number of testcases will be 2.if we know the number of

testcases for a program we can check all the errors

present in the program.

FUTURE WORK AND CONCLUSION

Future work entails identifying, and developing, other

relatable examples that can be used to teach software testing at

other testing levels-like integration, and system testing levels.

Additionally, finding techniques and relatable exercises that

help users understand code coverage in terms of data path, and

input partition coverage, are also important.

Software testing is a very important activity that requires more

relatable strategies to help users learn how to effectively test their

programs. Testing does not get enough attention in the SDLC and

so, naturally, users do not spend enough time to fully understand the

problems they are solving at a fundamental level. As a result, this

abandon propagates into how they test their code.

Using the above examples in Sections 3, it was demonstrated

that effective testing can be achieved by utilizing some of the basic

topics covered in a distinctive Data Structures course. This approach

focuses on understanding constraints and the fundamental

properties associated with solving a particular problem. The aim is

to encourage users to invest the minimum time to fully understand a

problem in order to create test cases that will effectively find bugs

and defects, which are the primary goals of software testing.

Additionally, we extended the scope of unit testing to include

performance testing of a recursive method, which was applied to

other programs.

References:

[1] K. Muşlu, B. Soran, and J. Wuttke, ―Finding bugs by isolating unit tests‖, In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering

[2] G. Calikli, B. Arslan, A. Bener, ―Confirmation bias in software
development and testing: An analysis of the effects of company size,
experience and reasoning skills‖, In Proceedings of the 22nd annual
psychology of programming interest group workshop, 2010.

[3] K. Buffardi, S. H. Edwards, ―Exploring influences on student adherence to

test-driven development‖, In Proceedings of the 17th ACM annual conference

on Innovation and technology in computer science education

[4] D.Meenakshi –―Software testing techniques in software development life cycle‖

International Journal of Computer Science and Information

Technologies, Vol. 5 (3) , 2014,

3729-3731,ISSN:0975-9646.

[5] G. Calikli, A. Bener, ―Empirical analyses factors affecting confirmation bias and
the effects of confirmation bias on software developer/tester performance. In
Proceedings of 5th international workshop on predictor models in software
engineering, 2010.

[6] Y. Langsam , M. Augenstein, A. M.Tenenbaum, "Data Structures using
Java", Pearson Prentice Hall, ISBN: 0-13-047721-4.

[7] A. Hunt, D. Thomas, ―The Pragmatic Programmer From Journeyman to Master‖,
Addison-Wesley, ISBN: 978-0-2016-1622-4

[8] . D. McGregor, D. A. Sykes. ―A Practical Guide to Testing Object-

Oriented Software”, Addison-Wesley Longman Publishing Co., Inc., 2001,
Boston, MA, USA.

D.Meenakshi,MTech, working as lecturer in computer science and

interested in software engineering research work and published journals in IJARCET

previous volume and participated in IEEE conference at coimbatore .

 K.PradeepKumar,MTech,Working as JKC Mentor and interested in

DataMining research work and published journals in DBMS in a conference conducted by

AndhraLayola college of engineering and technology.

